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A model for the interface of two media with different background densities,
separated by a charged bilayer, is solved exactly in a two dimensional, one
component plasma at reduced temperature 2. t

When the two media are in direct contact (no gap), then we can think of it
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The contact potential, or potential of zero charge appears to be a very simple
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function of the ratio of the background densities. We also find that

the potential does not depend on the surface charge, a fact that we

explain using a corollary of the perfect screening theorem.

A second case of interest is the case of the two media separated

by a gap that in our case could be charged: this is a model of a two

dimensional membrane or the polarization of the inner Helmholtz region.

Very surprisingly, we find that also the surface dipole is completely

screened by the charges surrounding the interface, so that the potential

drop across the interface layer only depends on the logarithm of the

charge densities, as found by Ballone, Senatore and Tosi for the most

simple case of a discharged contact.
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A3STRACT

A model for the interface of two media with different background

densities , separated by a charged bilayer,is solved exactly

in a two dimensional, one component plasma at reduced temperature 2.

when the two media are in direct contact (no gap), then we can think

of it as a model of a classical metal and an electrolytic solution

or just two metals. The contact potential, or potential of zero charge

appears to be a very simple function of the ratio of the background densities

ve also find that the potential does not depend on the surface charge,a

fact that we explain using a corollary of the perfect screening theorem.

A second case of interest is tha case of the two media separated by

a gap that in our case could be charged :this is a model of a two dimensional

membrane,or the polarization layer of the inner Helmholtz region.

Very surprisingly,we find that also the surface dipole is completely

screened by the charges surrounding the interface,so that the

potential drop across the interface only depends on the logarithm

of the charge densities, as found by 3allone,Senatore and rosi

for the most simple case of a discharged contact.



I-I NTRODUCTION

One of the most interesting exact results in the theory of charged

interfaces in recent times is the solution of the one component plasma (OCP)

in two dimensions by Jancovici (1,2). Although this model is exactly

solvable only at reduced temperature 2,which in a three dimensional world

corresponds to a little too concentrated ionic solution (for biological

systems),it may be solved for a rather wide variety of inhomogeneous systems

One of these is the interface between two media of different background

density, separated by a charged gap. This case could be a model for

the classical metal-metal junction,the semiconductor junction

the metal electrolyte interface among others.

In Biology there is also a system which corresponds to this model:

2he Donnan equilibrium is established between two media containing

different concentra-ions of 3roteins, and which are seoarated by

a membrane that allows passage of the small ions only (3).A system of

particular interest is the nerve membrane(4,5).The mechanism of oroduction

of the so called action ootential is strongly related to the charge

distribution across the interfaces.Because of the small size of the system

and the low conductivity,direct electrochemical measurements are difficult

Only recently experiments involving interacting double layers in a system

similar to a Donnan system have been reoorte,' (o).iere two immisciole

electrolytes are studied electrocnemically.Aowever these ex-eriments

involve rather comolex organic iolecules, and it is very nar

tc construct a nicroscooically correct tneory for the cnarie an2

and ootential orofiles,and tne differential caoacitanzes.ve snoili

nentior in tnis context the recent wcrK of Levine and Cutnwaite (7),

Jicnclls nd pratt (o) and :la-tue' and Levescue (9)



The ournose of this work is to ,)resent a simple model for these

systems based on the two dimensional OCP.Forrester and 3Snith(lQ)

have solved the case of a plasma contained between two fixed walls,and Smith

solved the case of a flat ideal electrode with image forces (II)

Our method of solution is based on the method of Jancovici (1,2) ,but

follows the oultline of these last twC references.

It is our hope that this exact solution will serve as a bencnmark

to evaluate the accuracy of different aproximate theories,and to check

the validity of exact theorems such as the oerfect screening sum rules.

In section 2 we give a description of the model and a brief outline

of the method of solution.The reader interested in the technical details

of the solution should consult references (1,2,10,11). In section 3

we discuss the case in which tne width of the gap is zero. In

section 4 we present calculations for the case in which the

memorane, or gao, is of finite width..ie remark that this case

also represents the inner Helmholtz layer with a fixed dipole.



II-4ETHOD OF SOLUTION

The system consists of an empty strip of width J,that separates

the two plasmas . The neutralizing backgroand in each side is of density

-ec(c/ and -eoc/T ,where e is the elementary charge,and
1 2

the borders of the strip have charge densities -eo/-r and-ec'/frT
1 2

The plasma coupling parameter is

in =P e/ =2

where P =I/kT is the Boltzmann thermal factor,T beinq the absolute

temperature. ?he value 11=2 may be special in the sense that

the nair correlations of the bulk have gaussian rather than exponential

screening.Otherwise this parameter is not unphysical,and ,in fact

it corresponds to the order of magnitude of a 1.4 electrolytic

solution at rocm temperature.

Following Jancovici (1,2) we consider initially our system to be

confined to a disk of radius R. In this disk there is a ring of inner

radius F and outer radius R The uniform oackground density of
1

the inner region is -ea./11,and that of the outer region is-eX/1T
1

Clearly

R R(.l)

21

where f. is the width of the rina which eventually will become our

TeTorane.ln our Todel this memebrane will be just 3 iaD. rhe 7ooile icns :f

crar-e e are free to te anywhere.



The total number of ions N must satisfy the electroneutrality relation

2 2 2
N=2(d R +d R )+R C +(R -R ) C (2.2)

1 i 22 I I 1 2 2

The hamiltonian of this model is

3= (1/2)e f - ZlnIr -r 2 + 20"R In(r /R 2 (r -R
k>j k j k=1 1 1 k 1 k 1

2 2 2
2'R ln(r /R ) @(r -R ) + cc (r -R ) &(R -r
2 2 k 2 k 2 1 k 1 1 k

2 2
+ oCR ln(r /R ) 8(r -R

1 1 k I k 1

2 2 2 2
+ o(r -R )-o.F in (r /R ) e(r -R )]} + 3 (2.3)

2 k 2 2 2 k 2 k 2 N

where r is the position of ion k, of charge e,and 'P(x) is the Heaviside
k

function of x.B is a background term that is irrelevant to our present

calculation.The octentials have been shifted to insure continuity

across the plates.

4e coTrute the canonical oartition function

z =(/M!)f dr e(.)

Renlacinq (2.3) intc (-,.4)

S- +i -cc r

Z = e {J ;r r
., n=u J



2(rn -n) R 2n +1
f1R g 'R2 g+[I/ R ]J dr r

1 R
I

2 2
2(n -n) 2(n-n ) R 2n +1 -c (r -R

g 2 g 2 2 2
[I/R [1/ R f dr r e

1 2 2
2

(2.5)

where

2
n =n -26 R - cr R (2.6)

g 1 11

2 2
n =n -2(TR -2e R +( orR - oCR ) (2.7)
2 1 1 22 22 1 1

and P=(I/kT) is the Boltzmann factor.

Introducing the incomplete gamma function

bt a-I - t

Y(a,b)= jb t e (2.d)

we qet

.eP '1 2 2 n+1
Z =e (I"") 6 (n +1; ocR ) exa[ac I/c

n=O 11 1



2(n -n) 2(n +1) 2(n +1)
g g g

+ [1/ R I(/2(n +1) [R -R J +
1 g 2 1

2(n -n) 2(n -n ) 2
9 29g 2 2

1/R ] 1/ R g f (n +I; oM R ) -f(n +1; oxR )

1 2 2 2 2 2 2

n +1
2 2

exp[aR ] (1/cL (2.9)
2 2 2

The single particle density is

N-1 2 2 2n
(lI/D) exp[-m (r -R )](r/R) 9( R -r ) +

n 1 1 1 1
n=0

2n
g

(r/R) [( r -R)-( r -R) +
1 2

2n 2n
2 g 2 2

+ (r/R) (R /R ) exoTt-o(r -R )][e( r -R )1
2 2 1 2 2 2

(2.10)

with
2 2n 2

D =exp (oCR ) (/R) 9(n +1;CC R )+
n I1 I 1

2n +2
2 L

+ (C /(2n +2) (R /R ) -1 1
. 2 1



2n 2(n -n)
g 2 g 2 2

+(I/R/ R ) 6 (n +1;R c) -e'(n +1;R 0)]
1 2 2 2 2 -

n +1
2 2

exp[C R ] /a
2 2 2

(2.11)

Similarly,the pair density distribution function is

m m i n 2(m +m )

Pr )r p~ r r r * [1/R2 2 m 2 2 2
12

I c(r ) :(r )1/{D D
1 2 m m

1 2
(2.14)

where D is defined in (2.11) and 3(r) is qiven by

2 2
(r)= exof-cx(r -R )J Q( R -r1 1 1

zg
+(rl/ ){[ ( - )-a(r-R )

1. 1 2

22 2
22

+ (R IL ) (rlR ) ex [-oc(r -R ) --(a -r)
2 2 2 2



(2.13)

with A-in -n
g g

-n -n
2 2

In the limit

R,R R ->
1 2

R -R (2.14)
2 1

and using

((n +1;N)=(f2F n/2) exp(-n+n in n) fl + {(-n)/f

with

x 2
-t

Wx f(/ o) dt e(21)

we get

00 2
(2/Jf- Jdt (1/D) {exp(-2ctx -2xt -7) 9(-x) +

- t 1

exr[(-2xj7(t+ 2& )H ((x) -(x-E)
1

+sxo,(-2cc (x-t) -2(,x-t) 4/ (ti\Ja"-{o' )-2t(20' tnt)] I (x-.)
2 1 2 1

IJ



with

2

D =exp(t /cc) [ I +{t /f)]/(
t 1 1

- [exp{-21f7(t+V2d' )}-1]/[ (t+1o" )]

21 1

2
+exp{-2f47(t+/7o' ) +[t+4i(o" +0' )] /cd [1-]{tt~7('€"+d )/.f}]/4

1 12 2 1 2 2 2
(2.17)

and for the pair density

2 2
(z z =P (x )?(x )-exp[-2cx -2ocx

2 1 2 i j

4/f I dt exp[- 2t(x +x + -iy)] /D I
-000 1 2 t

(2.1o)

where z=x+ iy,a result due to Jancovici (private

communication,12).



III THE 3ACKGROUND JUMP MODEL

A very interesting particular case of (2.16) arises when the

width of the interface layer £ is zero. In that case the charge

density is

g00 2I fx) 11t (I/Dt  {expl-2c x -2xtY7 x<0

22

J-110t 2
(3.1)

2
D =exp(t q 1) + 1 1-r I +Cx

2
+exp[ (t+ %) / o) 1 -'(t/r)]l

2 2 2
(3.2)

This equation for the case I=U has been independently obtained

by Jancovici t to be published ,12).

Figures 2 shows the mobile charge profile for various ratios of

the backcround densities m/ac .The value 16 is scaled to represent
2 1

the difference in density between a I molar electrolytic solution

and a simole ietal: If we take this number to be 64, then to go

from three dimensions to two dimension, we simply take tie (2/3) oower



which is 16.Clearly, most metals are far from being classical

one component plasmas (Drude Theory),although semiclassical treatments

are widely used to explain transport Properties (14),which,as we

know, are strongly dependent on correlations.Unfortunately the quantum

mechanics of fully correlated systems is very difficult,more so in

the vicinity of a surface.For this reason we believe that an exactly

solvable model of a fully classical metal interface is useful because

it illustrates the subtleties of the behaviour of correlations in

charged systems.Figure 3 shows the total charge distribution near

the interface as a function of the background ratio.Although it is clear

that the penetration depth on the metal side is smaller for the

"metal' side ( side 2),the charge densisty is also much larger

Figure 4 and 5 show the rather strong dependence of the charge

profile on the surface density (5. In Figures 6 and 7 we have

compared the charge profiles for different C, but keeping 6' constant.

Again, we see the rather dramatic dependence of the charge profile on the

surface charge. Figure 8 shows the dependence of the contact potential

on the surface charge e' ,compared to the ideal electrode case.

To investigate further this point consider Poisson's

eouation (15).

where c((x)=cc for x<O and c(x)=cC for x>U.

Sy elementary integration

If(x) -2dlxI1+21Xjx (x -x) (fp(x )-CC(x U)1W (3.4)
-1



Using (3.1), we get after some straightforward calculation

- (oa) -T(-oa) -- (1/4) in(oC/oc)2 (3.5)

2 1

This extremely simple formula for the contact potential of two

metals (or, correspondigly, to the potential of zero charge for the

case of the metal electrolyte interface), is not really unexpected

when the charge o-O:Actually this result was obtained on the basis of a

2
f =F-/kTN--(I/4) (e /kT) in oe +F (r) (3.6)

i i i 0

where i is the index for the side of the interface (i=1,2).

The reversible work to transfer one mobile charge from side to the other

is clearly

2
Af=(-l/4) (e /kT) ln(o /cc) (3.7)

2 1

But the reversible work is only electrostatic, so that
2 2

Af=(e /kT)d = (-l/4)(e /kT) ln(oc/oc) (3.8)
2 1

where we must remember that because of our special choice of units

the electrostatic potential is measured in units of 2kTA

rhis result is contained in the work of 3allone, 3enatore and rosi

(1d) who showed for the neutral interface that the potential drop

across the interface depends only on the difference of the chemical

octential in the bulk phases.



The surprise is that the surface charge has no effect whatsoever

on the potential drop across the surface.Clearly this must be

due to the fact that because of the perfect screening theorems (16,19,20)

the charge distribution has no multipole momrent.Indeed the theorems

have been proven for finite size disks ( for R finite ),and in that

case <x>=0,which implies no potential drop due to charge 6' .4e

conjecture that this relation remains valid in the limit or R->oo

Just as an interesting aside, if we scale the relation (3.8)

to three dimensions,then, since

(2/3)
£ =n (3.9)

A( (-1/6) In(n /n ) + F(T) (3.10)
J 2 1

where n ,n are the bulk electron densities of the metals,and F(T) is

1 2

is a function of the temperature alone.



IV THE GAP MODEL

The equation (2.16) offers a rich variety of possibilities that

we shall not explore at this time. we have plotted the charge density

densities for two different cases in figures 9

and (10) (total charge density).4ore complicated profiles are obtained

when the interface is charged and/or polarized. However, the more

interesting quantity is the electrostatic potential,which is obtained

by integrating Poisson's equation (3.3). The results for the charged gap

where o =o- =0" and the background cZ =4 are shown in Figures ii and 12
1 2 2

again here we observe that the effect of the charges is screened out

completely, and the potential drop is given by (3.5). ve finally

computed the case in which the interface had a permanent dipole

by setting &'=-e"=2. Figure 13 shows the two opposing orientations
1 2

of the dioole, just to show that they are also completely screened out

Figure 14 is the same calculation but with c =4.Again herethe
2

potential droo is given by (3.5) .rhis is a consecuence of the

perfect screening theorems.
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FIGURE CAPTIONS

Figure 1 System geometry.

Figure 2 Mobile charge density profile Ifi(x) Curve 1,q:=1;2,cx=2;3, o=4
2 2 2

4 ,Cd; 5, C=16
2 2

Figure 3 Total charge profile T-'(x)-cdx) ,same numeration of curves as

Figure 2..No gap in this case-f=O
i

Figure 4 same as Figure 3 but with &1.

Figure 5 same as Figure 4 but with 6=-I.

Figure 6 Variation of total density ?rofile with charge for oc=2:Curves
2

1,2,3,4,5 correspond to surface charge densities 6'-4,-2,J,2,4

Figure 7 same as Figure ' but with cc=16
2

Figure a Contact density as a function of the surface charge

Curve 2, =4;3,oc=16
2 2

Figure 9 2otal charge density profile for a gao model with e=1

Here ncth plates are equally charged Curve l,d =de=2;Curve 2 no charge
1 2

Curve 3,&-2.

Figure I 3ame as figure 9, but with 0 =-6 =+2,cc=4.Case with dipole
1 .2 2

and iackiround gao.

Figure Ii Potential orofiles for the same cases as in Figure 9.

Fiiure 12 Same as figure 11, but with a =4.
2

Fi-ure 13 interf-ce with dioole,no backarcund ,3a).Potential for

sar'e oase as Figure 1'J with x=1.
2



Figure 14 Same as Figure 13,but with background gap cc=4.Corresp-onds

2

to the charge density of Figure 10.
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